Genetic conflicts during meiosis and the evolutionary origins of centromere complexity.

نویسندگان

  • H S Malik
  • J J Bayes
چکیده

Centromeric DNA evolves rapidly, ranging in size and complexity over several orders of magnitude. Traditional attempts at studying centromeres have left unexplained the causes underlying this complexity and rapid evolution. Instead of directly studying centromeric DNA sequence, our approach has been to study the proteins that epigenetically determine centromere identity. We have discovered that centromeric histones (CenH3s) have evolved under positive selection in multiple lineages, suggesting an involvement in recurrent genetic conflict. Our hypothesis is that 'centromere-drive' is the source of this conflict. Under this model, centromeres compete via microtubule attachments for preferential transmission in female meioses occurring in animals and plants. Since only one of four meiotic products will become the egg, this competition confers a selfish advantage to chromosomes that can make more microtubule attachments, resulting in runaway expansions of centromeric satellites. While beneficial to the 'driving' chromosome, these expansions can have deleterious effects on the fitness of an organism and of the species. CenH3s as well as other heterochromatin proteins have evolved under positive selection to suppress the deleterious consequences of 'centromere-drive' by restoring meiotic parity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Conflicts: Stronger Centromeres Win Tug-of-War in Female Meiosis

Female meiosis presents unique opportunities for competition between chromosomes for evolutionary dominance. A new study reveals that centromere strength dictates meiotic success, driving karyotype evolution and reproductive isolation in mice.

متن کامل

I-35: Genetic Aberrations in Early Development:The Origins and The Fates

Genetic aberrations are commonly seen in human preimplantation embryos. Non-disjunction and premature division of a chromosome are common in both meiosis and mitosis divisions. The expected result for meiotic aneuploidies is full aneuploidy in the later stages whereas mosaicism is the most frequent event in the cleavage and blastocyst stages. The main causes for mosaicism are post-zygotic event...

متن کامل

Dynamic epigenetic states of maize centromeres

The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence...

متن کامل

Major Evolutionary Transitions in Centromere Complexity

Centromeres are chromosomal elements that are both necessary and sufficient for chromosome segregation. However, the puzzlingly broad range in centromere complexity, from simple "point" centromeres to multi-megabase arrays of DNA satellites, has defied explanation. We posit that ancestral centromeres were epigenetically defined and that point centromeres, such as those of budding yeast, have de...

متن کامل

Centromere mapping functions for aneuploid meiotic products: Analysis of rec8, rec10 and rec11 mutants of the fission yeast Schizosaccharomyces pombe.

Recent evidence suggests that the position of reciprocal recombination events (crossovers) is important for the segregation of homologous chromosomes during meiosis I and sister chromatids during meiosis II. We developed genetic mapping functions that permit the simultaneous analysis of centromere-proximal crossover recombination and the type of segregation error leading to aneuploidy. The mapp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 34 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2006